Showing posts with label arcsecant. Show all posts
Showing posts with label arcsecant. Show all posts

Wednesday, December 2, 2015

[AP_Calculus20151201] Integrate something with arcsecant by parts

Question
Introduction
     This question is taken from the Techniques of Integration chapter of Thomas’ Calculus, 12th edition.  It looks pretty nasty in that the arcsecant is just one of those things on the fringes of teachers’ and students’ minds.

Strategy
     We apply the “Integration by Parts” Formula                                                  
with the “d(etail)” heuristic.  The expression  t  is  algebraic whereas the arcsecant expression is of the “inverse” type.  Since “a” comes before  “i”  in “d(etail)”, we choose the algebraic   expression  t  to serve as our  dv/dx.  We realise that we will need the derivative of the arcsecant                                                 
for  sec-1 x  being a cute angle ... I mean, an acute angle.

Solution
Remarks
     A slight modification of this approach is to first re-express the arcsecant as  arcsec t = arccos(1/t).  One needs to work out the derivative of this arccosine expression when doing the integral.

H04. Look for pattern(s)
H05. Work backwards
H10. Simplify the problem
H11. Solve part of the problem


Suitable Levels
GCE ‘A’ Levels H2 Mathematics (challenge)
* IB Mathematics HL (challenge)
* Advanced Placement (AP) Calculus BC (challenge)
* University / College calculus
* other syllabuses that involve integration and inverse trigonometric functions
* any precocious learner who loves a challenge




Tuesday, December 1, 2015

[H2_Expository] Derivative of the Arcsecant function

Introduction
     This article explains how to differentiate, i.e. find the derivative of, the arcsecant function, which is seldom discussed in class.  If you look at the various syllabus outlines, sometimes they do not explicitly mention or imply the arcsecant, neither do they explicitly exclude this.  The important thing is: we should be able to figure it out from our basic knowledge, which is the whole point of mathematics.  The people who talk about and focus on mathematics syllabus content as if it is the only or most important thing are missing the point of mathematics education, and there are a plenty of these idiots around.  Do not follow them.
     The arcsecant, written as arcsec or sec-1, is also known as the inverse secant function.  So arcsecant means that, given the value of a secant function, you want “the” angle whose secant is that given value.  The problem is there are many possible values.  Look at the graph below.


Defining the Inverse of the secant properly
     On the graph, a horizontal line can pass through (infinitely) many points.  Like any periodic trigonometric function, the secant function is not a one-to-one (a.k.a. “injective” or  “one-one”) function.  As such, it is not invertible.  However, we can restrict the function so that its domain is  [0, p] \ { p/2 }.  This is highlighted in yellow on the graph.
     Remember that sec x = 1/cos x.  Basically we follow the principal values  [0, p]  of the arccosine function   except  p/2  where the cosine is zero and its reciprocal the secant is undefined.       With this restriction on the domain, we get a one-one secant function, with range (-¥, -1] È [1, +¥).  We can now define the inverse function, and its graph is obtained by reflecting the above graph along the mirror line  y = x.  We get this:-

     Observe that in the yellow regions in both graphs, the gradients at the points are non-negative.  We have chosen the domain of the secant function, which is the same as the range of the arcsecant function, such that the derivatives will be non-negative.

Deriving the Derivative (refer to the“Onion” Method for differentiation)


Remarks
     Do not confuse  arccos y   with  (cos y)-1.  They are not mean the same thing.
     In case you are wondering, the prefix “arc-” means the angle, which (if you use radians) is literally the same as the arc-length when the radius equals to  1.  In symbols, s = rq  with r = 1 means  s = q.  Although the term can be used with degrees or other units, when doing advanced mathematics like calculus, we would usually be using radians anyway. 

Suitable Levels
GCE ‘A’ Levels H2 Mathematics
International Baccalaureate (IB) HL Mathematics
* Advanced Placement (AP) Calculus AB & BC
* University / College calculus
* other syllabuses that involve differentiation
* any learner interested in calculus