Question
Introduction
This is
another one of those Singapore
primary school mathematics problems whose underlying algebraic structure is
equivalent to that of a pair of simultaneous linear equations. However, the primary school pupils are taught
only simple algebra. A very popular
method is the use of bar diagrams a.k.a. “the model method”. It is a useful tool to help pupils visualise
the quantities involved. However, some
people are not comfortable with this method.
One needs to cut the bars into the correct number of sub-parts. If the diagram is drawn wrongly, one would
need to erase the diagram and redraw it.
Remember: the “model method” is just one of the many ways of drawing
diagrams, which is only one of the many heuristics for solving mathematical
problems. It
is worth the ship, but do not worship the “model method”. If it
works for you, go ahead. If not, do not
force it. Try another method. Do not cut your feet to fit the shoes (削足适履).
Once
again, I demonstrate my Distinguished Ratio Units (DRU) method as an
alternative. Let us say that a pupil who uses DRU actually drew the diagram in his/her mind, in a way. Instead of drawing various sized multiple units, we now use numbers
surrounded by different shapes to represent the different types units. It is easy to read the passage sentence by
sentence and translate them directly into the diagram without having to worry
about whether the unit is drawn to the correct relative length. To illustrate the facility of use, I shall actually
present two ways to attack the problem using DRU.
Solution
1 (Unifying units via LCM)
I use one “circle”
unit each for what Emma and Francis had at first. Later on, after adding two “circle” units,
Emma has 3 “circle” units. After subtracting 8,
Francis ends up with, say, one “square” unit. Emma has four times as much, so Emma has 4
“square” units, which is equal to
3 “circle” units.
Now since
the LCM of 3 and
4 is 12, we
can make Emma’s later holdings for stickers to be 12
“triangle” units, say. We can
express every of the original units in terms of this common “triangle”
unit. Just multiply the numbers in every
“circle” unit by 4, and multiply the numbers in every “square”
unit by 12. This is what we would get:-
From here, we easily see that the transition
from 4
“triangle” units to 3 “triangle” units is a subtraction by 8.
Hence 1 “triangle” unit is 8 and therefore 4
“triangle” units (which represents Francis’ original number of stickers)
represents 32. So Francis had 32
stickers at first.
Solution
2 (Stepping stone)
We model
the situation in a way similar to the above solution, except that we reverse
the arrow connecting 1 “circle”
unit to 1 “square” unit and replace the “+8” with “–8”. We
have not changed the meaning by doing this.
Now, multiply everything in Francis’ column by 4 so
as to obtain 4 square units.
This is the same as imagining what would have happened if Francis’
had 4
times his original number of stickers and he had given away 4
times (i.e. 32) the number of stickers.
Obviously, he would have 4 times the number left, as represented by 4
“square” units. If we added 32 to
the 4
“square” units, we would get 4
“circle” units.
Notice that the
4 “square” units now serve as a
stepping stone to connect the 3 “circle” units to 4 “circle” units, as highlighted in green. Hence we can see straightway that 1
“circle” unit is the same as
32. But this is the answer we
want, because Francis had the equivalent
of 1
“circle” unit at the beginning!
Summary
In the
first method, I just use two different types of units. Then I use the idea of Lowest Common Multiple
(LCM) and then change all the quantities to a common type of unit. In the second method, I multiply a relation
by a certain number so that one type of units matches exactly and this serves
as a stepping stone to find a link that solves the other unit. I hope you like my Distinguished Ratio Units
method.
H02. Use a diagram / model
H04. Look for pattern(s)
H05. Work backwards
H06. Use before-after concept
H09. Restate the problem in
another way
Suitable Levels
* Primary School Mathematics
* other syllabuses that involve whole numbers and
ratios
emma has x no of stickers francis has x no of stickers. emma bought 2*x amount and now have a total of 3*x stickers. francis gave 8 away and have now x-8 stickers. connection is 3x=4(x-8) solve it and you have x=32
ReplyDeleteIn Singapore primary schools, modelling is often used, although algebra is also acceptable.
Delete